НАНОРОБОТЫ (Nanorobots)

  • Робот не может причинить вреда человеку или своим бездействием допустить, чтобы человеку был причинен вред.
  • Робот должен выполнять приказы человека, кроме приказов, противоречащих Первому закону.
  • Робот должен заботиться о своей безопасности, если это не противоречит Первому и Второму законам.
  • Айзек Азимов. «Законы робототехники»

нанороботы

Человечество во все времена стремилось улучшить условия своего существования. Для этого в первобытном обществе люди использовали различные орудия труда, несколько позже они приручили диких животных, которые стали приносить пользу человеческому сообществу. Шли годы, менялся мир, менялись люди и их потребности. Теперь большинство из нас уже не может представить себе жизнь без современных благ цивилизации, достижений науки, техники, медицины. Следующим шагом в этом развитии, по мнению многих ученых, станет освоение нанотехнологий, а в частности систем очень малого размера, способных выполнять команды людей. Таких послушных существ называют нанороботами. Кстати, автором слова «робот» является чешский драматург К. Чапек, который в 1920 г. назвал этим словом придуманное им человекоподобное существо (робот — немного измененное чешское robota, которое переводится как «принудительный труд»): «Роботы — это не люди... они механически совершеннее нас, они обладают невероятно сильным интеллектом, но у них нет души».

Наноманипулятор Дрекслера

Впервые понятие наноробота или молекулярного ассемблера появилось в нашумевшей книге Эрика Дрекслера (Eric Drexler) из Массачусетского технологического института «Машины созидания: наступление эры нанотехнологий» (1986 г.). По мнению Дрекслера, будущее молекулярной технологии и нанотехнологий состоит в создании функциональных структур и устройств путем их поатомной сборки с по-мощью программируемых роботов (рис. 1), нанороботы а также в разработке самих молекулярных роботов, способных «строить» из атомов различные объекты. Конструирование таких машин предполагалось осуществлять путем формирования химических связей за счет механического сближения электронных оболочек атомов. Наноманипулятор, описанный Дрекслером, состоял из 4*106 атомов, а робот, снабженный молекулярным компьютером, вспомогательными механизмами и т.д., содержал ~ 1*107 атомов. Однако, возможности отдельного робота, оказываются весьма ограничены, в связи с его малыми размерами, что, по мнению Дрекслера, требует создания наномашин, способных к самовоспроизводству — то есть размножению или репликации. В основе идей о самореплицирующихся структурах лежит теория фон Неймана (1940 г.), согласно которой репликация является основой природных механизмов развития, а сам процесс репликации используется как в клеточной инженерии, так и при воспроизводстве живых организмов. Дрекслер сам же описал опасность создания таких систем: выход из-под контроля процесса репликации из-за возникновения ошибки в программе отдельного робота-репликатора, может привести к техногенной катастрофе (см. Серая слизь). Идеи Дрекслера вызвали волну неприязни к нанотехнологиям со стороны населения. Впрочем, эти полуфантастические прогнозы оказались противоречащими законам термодинамики, а технологический прогресс продолжил движение вперед.

Прототипы нанороботов

На сегодняшний день уже существует несколько прототипов нанороботов — устройств размером в десятки нанометров, которые могут самостоятельно манипулировать частицами атомных и молекулярных размеров. Одним из них является экземпляр, созданный химиками Нью-Йоркского университета, которые впервые в мире сконструировали прямоходящего двуногого наноробота. В качестве исходного материала Н. Симан и У. Шерман воспользовались мелкими фрагментами двухцепочечных и одноцепочечных молекул ДНК. Шагающий наноробот существует в миллионах копий, плавающих в буферном растворе. Внешне он напоминает щипцы для конфет — две двухцепочечные ДНК-вые ноги длиной в 10 нанометров, упруго соединенные на одном конце и свободные на противоположном (рис. 2). нанороботы Каждая нога образована тридцатью шестью нуклеотидными парами, которые удерживаются водородными связями по обычной для ДНК схеме: аденин напротив тимина, а гуанин напротив цитозина. С их свободных концов свисают совсем уж коротенькие хвостики — кусочки одноцепочечной ДНК.

Чтобы понять, как движется робот, посмотрим на схему. Он «ступает» по особым опорам, тоже изготовленным из ДНК, которые вытянуты вдоль ДНК-вой молекулы-дорожки. В начальный момент обе ноги фиксируются на соседних опорах с помощью двух одноцепочечных спиралей ДНК, действующих подобно якорям. Этот молекулярный якорь с одного конца комплементарен «хвостовым придаткам» ноги, а с другого — вершине опоры, благодаря чему он и удерживает их вместе. Такая позиция изображена на первом рисунке схемы (рис. 2). Надо отметить, что концевые участки ног не комплементарны опорам, и поэтому робот не может «устоять» без помощи якорей. Первый этап шага состоит в отделении правой ноги от опоры. нанороботыЧтобы это произошло, свободно плавающая в буфере спираль ДНК (желтая полоска на втором рисунке схемы) вступает с правым якорем в химическую связь и отводит его в сторону. Незакрепленная нога перемещается вправо (третий рисунок) и зависает над следующей подставкой. Здесь к ней подсоединяется очередной молекулярный якорь, который притягивает ее к новой опоре, — и полшага сделано (четвертый рисунок). Когда то же самое происходит и с левой ногой (пятый и шестой рисунки), робот перемещается на одну позицию вправо. Интересно, что абсолютно аналогичный принцип используется при перемещении белка миозина по фибриллам в живых организмах.